
Lecture 13: Software and Hardware Issues in Computational
Physics

Ammar H. Hakim (ahakim@pppl.gov) 1

1Princeton Plasma Physics Laboratory, Princeton, NJ

Princeton University, Course APC523, 2020

Goal: Hardware and software for Computational Physics

Our computation physics codes must run somewhere: Making code work on modern
hardware and writing long-lived and usable software is highly non-trivial task. Difficult
and under appreciated art!
• Modern computer hardware is changing: new architectures are emerging (too)

rapidly.
◦ Pressure on hardware: make chips faster but consume less energy. Contradictory goals.
◦ New directions: many (100s or 1000s) more low-power “cores” with lower clock speed.

Funded by Exascale Project in the US (https://www.exascaleproject.org). Aims
to build machines that do 1018 FLOPS!

• Software is expensive, even (and especially) when it is free!
◦ Software development is labor intensive. Takes time, and humans get tired, need to

sleep, eat, take vacations (and hide from viruses).
◦ More importantly: writing good code is an art. Can’t be learned only from books. Need

to apprentice yourself with a Master Craftsman. Process is slow, can take years to
perfect art.

2 / 32 https://apc523-2020.rtfd.io

https://www.exascaleproject.org

Some History: Charles Babbage, (1791-1871)

• Considered to be the “Father of the computer”.
Designed mechanical machines to compute
values of polynomial functions. Not completed in
his lifetime. Built by Science Museum, London in
1991 (printer he designed constructed in 2000)

• Accomplishment of greatest genius was the
invention of the “Analytical Engine”. General
purpose computer, with all essential ideas now
found in modern computer hardware worked out
in detail.

See links on lecture website. See also cyberpunk
novel “The Difference Engine”. Explores dystopian
alternate history in which Analytical Engine built.

3 / 32 https://apc523-2020.rtfd.io

Some History: John von Neumann, (1903-1957)

• Polymath of great genius: mathematician,
physicist and computer scientist. Modern
computer architecture (von Neumann
architecture) named after him.

• Influential machine designed at Institute of
Advanced Study from 1945-1951; 40-bit “word”
with two 20-bit instructions; 1024 words of
memory.

• Also wrote first and highly influential paper on
error analysis on Gaussian elimination with
Herman Goldstine: created field of numerical
analysis. See review in SIAM Rev. 53 (4),
pp.607-682.

4 / 32 https://apc523-2020.rtfd.io

Many others, some with Princeton background

The history of computing is complex and many people have played key role, many with
Princeton background (like von Neumann who was at IAS)

• Alan Turing. Towering genius in theoretical computer science, got his math Ph.D
from Princeton University. Invented “Turing machines”, an abstract model for
universal computing machine. Very influential and part of modern CS curriculum.
Worked with von Neumann on philosophy of AI and machine computability.

• Not so well known: Charles Sander Peirce (“Purse”). Realized that logical
operations could be carried out by electrical circuits, way back in 1886, decades
before such machines were built! See letter in which first logic circuit is described
to his former student Allan Marquand of Princeton. (Science Library near GIS and
book stacks). Rather sad letter, written when C.S Peirce was very poor and had to
borrow money from Marquand. (Art library named after Marquand).

5 / 32 https://apc523-2020.rtfd.io

A note on computer speeds and prefixes

Just a reminder

• Giga = billion (109)

• Tera = trillion (1012)

• Peta = 1015

• Exa = 1018 (billion times faster that Gigascale)

Typical processors are in the GHz range. (My MacBook Pro clocks at 2.8 GHz and has
4 cores). Typical laptop drives are in terabyte range. Largest current machines provide
10s of Petaflops computing powers with new exascale machines available in a 2-5 years.

6 / 32 https://apc523-2020.rtfd.io

What drives single processor performance?

Moore’s “Law” (more of an industry observation) “The number of transistors
incorporated in a chip with approximately double every 24 months”

• Ultimately, it boils down to the smallest
feature sizes that can be lithographed. At
one point, people thought it would
bottom out at 28 nm. However many
companies have 10 nm and 7 nm in mass
production, with 5 nm around the corner.

• Eventually, individual processors are not
going to get much faster. It is hard to
shrink semiconductor feature sizes any
further. Fundamental limits from physics
(speed of light, EM cross-talk, heat
generation, ...

7 / 32 https://apc523-2020.rtfd.io

At present, processor hardware architecture is in significant flux

• There is a trend away from faster, complex, chips to chips with simpler, less fast “cores”
(many-core machines)

• Power consumption is a huge issue with major supercomputer installations. If we go along the path
we are on now, a small power-plant will be required to simply run the cooling systems of large
machines.

• With the rise of handheld devices (smartphones, tablets, ...) there is a drive towards low-cost and
low-power chips. Significant work in ARM chips is going on. (These are Reduced Instruction Set
Computer (RISC) chips, designed to be cheap and low power)

• Use of Graphics Processing Units (GPUs) in HPC is also increasing.

• It is incredibly hard for software to keep up with hardware. Software is written by humans, who
need to eat, sleep, take vacation, etc. Also, software is extremely complicated, more so than the
hardware it runs on.

A major applied mathematics, computational physics and software engineering challenge is to design
algorithms which take advantage of this complicated zoo of emerging hardware.

8 / 32 https://apc523-2020.rtfd.io

Two major types of parallel programming

To remain abstract, I will use “Processing Unit” (PU) as a short-hand. It could mean
independent CPUs, threads or cores.

• In Shared memory parallel programming, different PUs may run different code, but
have access to the same memory. Synchronization of read/writes is a major issue.

• Shared memory systems usually use “threads”. These are separate code execution
paths. A CPU runs a thread for a bit, stops it, and then runs another thread.
Complex programs can have hundreds of threads.

• In the second type, distributed memory, each PU executes the same code, but on
their own portions of the data. Communication is done via messages. This is the
most common pattern in code which solves PDEs (either via grid or PIC methods).

9 / 32 https://apc523-2020.rtfd.io

How much can parallel algorithms help? Amdahl’s Law

Amdahl wrote an important paper in 1967 (“Validity of the single processor approach
to achieving large scale computing capabilities”). Basically, he advocates using serial
processing. Paper starts out: “For over a decade prophets have voiced the contention
that the organization of a single computer has reached its limits and that truly
significant advances can be made only by interconnection of a multiplicity of computers
in such a manner as to permit cooperative solution. Demonstration is made of the
continued validity of the single processor approach and of the weaknesses of the
multiple processor approach in terms of application to real problems and their
attendant irregularities”

This paper has the statement to what is now known as “Amdahl’s Law”. It is a very
good (and quick) read.

Incidentally: Amdahl never actually writes any equations in his paper, but states it in
words! (Perhaps he didn’t know how to typeset equations?)

10 / 32 https://apc523-2020.rtfd.io

Amdahl’s Law shows the limitation of parallel programming with
constant work loads

Let a process take unit time to run. Then, ideally, with p PUs, the run time should be
1/p. Amdahl points out that in reality, only a fraction f can sped up, the remaining
1− f is “irreducibly” serial. Hence, the run-time is

Ta(p, f) = f /p + (1− f)

Hence, speedup will be

Sa(p, f) =
1

f /p + (1− f)

Note that if f < 1, then

Sa(∞, f) =
1

1− f

which is independent of number of PUs!
11 / 32 https://apc523-2020.rtfd.io

Amdahl’s Law for various parallelizable fractions

0 100 200 300 400 500
Number of PUs

0

10

20

30

40

50

60

70

80

90

S
p
e
e
d
 U

p f=0.9

f=0.95

f=0.99

Figure: Amdahl’s Law shows that the speedup of a parallel program will quickly saturate if there
is any fraction of the work which is irreducibly serial.

12 / 32 https://apc523-2020.rtfd.io

Some comments on Amdahl’s Law

• Amdahl’s law is optimistic in the sense that it assumes that the parallelizable
fraction speedup scales linearly. Things get worse with (inevitable) overhead say
from messaging, etc.

• Amdahl’s law is pessimistic in that it assumes that we want faster results for the
same problem. This is not true for most problems of interest.

In reality, if someone gives us a bigger computer, we want to do a bigger problem. This
is crucial to getting around the limitations of Amdahl’s Law.

Assume that if f is the parallelizable fraction of a serial job, then with p PUs we will
run a p times bigger job. Then, the speedup will be

Sg (p, f) = (1− f) + fp

Note that now, the speedup is linear in p! Essentially, the cost of the serial part is
amortized by going to a bigger problem. This is called Gustafson’s Law.

13 / 32 https://apc523-2020.rtfd.io

These two speedup laws distinguish strong and weak scaling

The strong scaling of a problem is the actual speedup one can achieve for a problem of
fixed size, but increasing PUs. Amdahl’s law bounds such a scaling. (In general, actual
strong-scaling will be worse than predicted by Amdahl’s Law)

The weak scaling of a problem is the actual speedup one can achieve for by problem
with size increasing linearly with number of PUs. Gustafson’s law bounds such a
scaling. (In general, actual weak-scaling will be worse than predicted by Gustafson’s
Law)

In general, most real-life problems will scale in a more complicated manner. For
example, for some problems are I/O and/or communication bound. Others are bound
by codes which are not parallel at all (for example, some old legacy serial code might
be needed).

14 / 32 https://apc523-2020.rtfd.io

The Corollary of Modest Potential

This term was coined in an important paper “Type Architectures, Shared Memory, and
the Corollary of Modest Potential” by L. Snyder in 1986. (Ann. Rev. Comput. Sci.
1986. 1:289-317).

Consider a time-dependent 3D problem on a rectangular grid, with n number of cells in
each direction. Then, assuming that the number of time-steps to get to a given time is
proportional to n, the computational time will scale as

Tm(n) ∼ n4

(There are n3 cells, and n steps to take). Hence, even if we get linear scaling from
Gustafson’s law, the scaling of n with number of PUs, p, will be sub-linear. In this
particular case,

n ∼ p1/4

Hence, to do a problem 100 times bigger, we will need 108 more computing resources!
15 / 32 https://apc523-2020.rtfd.io

Can be worse than predicted by The Corollary of Modest Potential

Note that most algorithms are not parallel in time! This means, that for a 3D problem,
we can only use ∼ n3 more PUs, and need to run for a factor of n longer.

16 / 32 https://apc523-2020.rtfd.io

What do all of these (seemingly pessimistic) scaling laws teach us?

This does not mean that things are hopeless! In fact, what this means is that parallel
algorithms must go hand-in-hand with better physics models, which do not require such
high resolutions. For example,

• Instead of solving Navier-Stokes (NS) equations, one solves Reynolds Averaged NS
(RANS) equations, or uses Large Eddy Simulation (LES) techniques

• Or, instead of tracking very particle in a large system, one performs statistical
averaging and uses expensive particle/kinetic calculations to provide occasional
validation

• Or, instead of doing Vlasov-Maxwell (6D, with plasma frequency time-scales), one
uses (in appropriate limits) gyrokinetic equations (5D, with turbulent fluctuation
time-scales), or fluid or other appropriate approximations.

17 / 32 https://apc523-2020.rtfd.io

Conclusion: Ammar’s Corollary of Cynical Progress

It is easy to fill up the biggest computer with FLOPs and bytes. It is much harder to do
useful science.

Another way to put it: in a Darwinian process with pressure to use bigger-and-bigger
machines, one may select for less-than-desired traits

18 / 32 https://apc523-2020.rtfd.io

Anatomy of a Very “Simple” Problem

Numerical Methods 101: Write a function to multiply two square matrices

for (auto i=0; i<N; ++i)

for (auto j=0; j<N; ++j) {

C(i,j) = 0.0;

for (auto k=0; k<N; ++k)

C(i,j) += A(i,k)*B(k,j);

}

Recall that

Cij =
∑
k

AikBkj

The solution in C++ is very simple:
However, how efficient is this solution?

19 / 32 https://apc523-2020.rtfd.io

There is a long history of linear algebra libraries

• Designing efficient linear algebra routines is not trivial, even for such “simple” matrix-matrix
multiply problems.

• Most widely used libraries are BLAS (Basic Linear Algebra System) on top of which is built
LAPACK (Linear Algebra Package).

• BLAS provides “basic” routines (matrix-vector, matrix-matrix multiplication, etc). LAPACK
provides linear solvers, eigensystem finders, Singular Value Decomposition (SVD), etc.

• Created originally by Jack Dongara in 1970s. Continues to be developed and optimized. Many
platforms (Apple, Intel, ...) supply their own highly optimized BLAS/LAPACK libraries. Other
“self-tuning” implementations also exist (see ATLAS).

• Modern libraries using very clever C++ techniques are also being created and extensively used.
The best example I know of is the Eigen C++ library (see http://eigen.tuxfamily.org/).

Lets compare our hand-written code with Eigen and BLAS. (Look at code)

20 / 32 https://apc523-2020.rtfd.io

http://eigen.tuxfamily.org/

What do Eigen/BLAS know that we don’t?

Cache usage and use of SIMD1 instructions. Modern processors have a hierarchy of
memory locations they can access, with very different access speeds.

reused. For code this means that there are most likely
loops in the code so that the same code gets executed
over and over again (the perfect case for spatial locality).
Data accesses are also ideally limited to small regions.
Even if the memory used over short time periods is not
close together there is a high chance that the same data
will be reused before long (temporal locality). For code
this means, for instance, that in a loop a function call is
made and that function is located elsewhere in the ad-
dress space. The function may be distant in memory, but
calls to that function will be close in time. For data it
means that the total amount of memory used at one time
(the working set size) is ideally limited but the memory
used, as a result of the random access nature of RAM, is
not close together. Realizing that locality exists is key to
the concept of CPU caches as we use them today.

A simple computation can show how effective caches
can theoretically be. Assume access to main memory
takes 200 cycles and access to the cache memory take
15 cycles. Then code using 100 data elements 100 times
each will spend 2,000,000 cycles on memory operations
if there is no cache and only 168,500 cycles if all data
can be cached. That is an improvement of 91.5%.

The size of the SRAM used for caches is many times
smaller than the main memory. In the author’s experi-
ence with workstations with CPU caches the cache size
has always been around 1/1000th of the size of the main
memory (today: 4MB cache and 4GB main memory).
This alone does not constitute a problem. If the size of
the working set (the set of data currently worked on) is
smaller than the cache size it does not matter. But com-
puters do not have large main memories for no reason.
The working set is bound to be larger than the cache.
This is especially true for systems running multiple pro-
cesses where the size of the working set is the sum of the
sizes of all the individual processes and the kernel.

What is needed to deal with the limited size of the cache
is a set of good strategies to determine what should be
cached at any given time. Since not all data of the work-
ing set is used at exactly the same time we can use tech-
niques to temporarily replace some data in the cache with
others. And maybe this can be done before the data is
actually needed. This prefetching would remove some
of the costs of accessing main memory since it happens
asynchronously with respect to the execution of the pro-
gram. All these techniques and more can be used to make
the cache appear bigger than it actually is. We will dis-
cuss them in section 3.3. Once all these techniques are
exploited it is up to the programmer to help the processor.
How this can be done will be discussed in section 6.

3.1 CPU Caches in the Big Picture

Before diving into technical details of the implementa-
tion of CPU caches some readers might find it useful to
first see in some more details how caches fit into the “big
picture” of a modern computer system.

Cache CPU Core

Bus

Main Memory

Figure 3.1: Minimum Cache Configuration

Figure 3.1 shows the minimum cache configuration. It
corresponds to the architecture which could be found in
early systems which deployed CPU caches. The CPU
core is no longer directly connected to the main mem-
ory.16 All loads and stores have to go through the cache.
The connection between the CPU core and the cache is
a special, fast connection. In a simplified representation,
the main memory and the cache are connected to the sys-
tem bus which can also be used for communication with
other components of the system. We introduced the sys-
tem bus as “FSB” which is the name in use today; see
section 2.2. In this section we ignore the Northbridge; it
is assumed to be present to facilitate the communication
of the CPU(s) with the main memory.

Even though most computers for the last several decades
have used the von Neumann architecture, experience has
shown that it is of advantage to separate the caches used
for code and for data. Intel has used separate code and
data caches since 1993 and never looked back. The mem-
ory regions needed for code and data are pretty much
independent of each other, which is why independent
caches work better. In recent years another advantage
emerged: the instruction decoding step for the most com-
mon processors is slow; caching decoded instructions
can speed up the execution, especially when the pipeline
is empty due to incorrectly predicted or impossible-to-
predict branches.

Soon after the introduction of the cache the system got
more complicated. The speed difference between the
cache and the main memory increased again, to a point
that another level of cache was added, bigger and slower
than the first-level cache. Only increasing the size of the
first-level cache was not an option for economical rea-
sons. Today, there are even machines with three levels
of cache in regular use. A system with such a processor
looks like Figure 3.2. With the increase on the number of
cores in a single CPU the number of cache levels might
increase in the future even more.

Figure 3.2 shows three levels of cache and introduces the
nomenclature we will use in the remainder of the docu-
ment. L1d is the level 1 data cache, L1i the level 1 in-
struction cache, etc. Note that this is a schematic; the
data flow in reality need not pass through any of the
higher-level caches on the way from the core to the main

16In even earlier systems the cache was attached to the system bus
just like the CPU and the main memory. This was more a hack than a
real solution.

14 Version 1.0 What Every Programmer Should Know About Memory

Figure: A very simple cache configuration

A “cache” is an area of memory which is close to
the CPU core. The memory access to the cache is
very fast, compared to access to main memory. The
difference comes about as main memory is Dynamic
RAM (DRAM) v/s cache is SRAM. DRAM circuits
are tiny (hence more of them can be on a single
chip) v/s SRAM circuits which are very large.
However, DRAM essentially relies capacitive
discharge, which is very slow.

1Single Instruction Multiple Data
21 / 32 https://apc523-2020.rtfd.io

Eigen and BLAS preload as much data as possible in the fast cache

• Using clever techniques, these libraries preload as much of the matrix data as
possible into the cache

• Once loaded, the CPU can fetch this data very rapidly to do the multiplication and
sums.

• On modern CPUS FLOPS are basically free. For example, most operations take a
single (even fewer) cycle. It is the memory access which is very expensive (5-20
cycles for cache, and 100s of cycles for main memory). Hence, to improve
performance, one must make sure that cache is used in an optimal manner.

22 / 32 https://apc523-2020.rtfd.io

Why is our matrix-matrix multiply code so slow?

Is it because of the data access pattern in matrix-matrix multiply?

Figure: In row major order (left) the rows are kept contiguously. To be cache friendly one must
increment the column index (j) faster. In column major order (right) the columns are kept
contiguously. To be cache friendly one must increment the columns i index faster. For
matrix-matrix multiply this is impossible, as one or either indexing will incur a cache miss!

23 / 32 https://apc523-2020.rtfd.io

So how to overcome this seemingly “impossible” situation?

// transpose

Matrix T(N,N);

for (auto i=0; i<N; ++i)

for (auto j=0; j<N; ++j)

T(i,j) = B(j,i);

for (auto i=0; i<N; ++i)

for (auto j=0; j<N; ++j) {

C(i,j) = 0.0;

for (auto k=0; k<N; ++k)

C(i,j) += A(i,k)*T(j,k);

}

The problem is that the matrix-matrix product is an inner
product of columns of A with the rows of B. So, lets copy the
transpose of B matrix to a temporary matrix T . I.e. T = BT .
Then, the matrix-matrix multiply becomes

Cij =
∑
k

AikTjk

Now, note that if the data is stored in row major order, both
matrices are accessed in a cache friendly manner!

This is problem and chip dependent: likely does not matter
much for “small” matrix sizes.

24 / 32 https://apc523-2020.rtfd.io

Modern CPUs very complicated: multiple levels of caches, SIMD ...

L1d Cache CPU Core

L2 Cache L1i Cache

L3 Cache

Bus
Main Memory

Figure 3.2: Processor with Level 3 Cache

memory. CPU designers have a lot of freedom design-
ing the interfaces of the caches. For programmers these
design choices are invisible.

In addition we have processors which have multiple cores
and each core can have multiple “threads”. The differ-
ence between a core and a thread is that separate cores
have separate copies of (almost17) all the hardware re-
sources. The cores can run completely independently
unless they are using the same resources–e.g., the con-
nections to the outside–at the same time. Threads, on the
other hand, share almost all of the processor’s resources.
Intel’s implementation of threads has only separate reg-
isters for the threads and even that is limited, some regis-
ters are shared. The complete picture for a modern CPU
therefore looks like Figure 3.3.

Main Memory
Bus

Figure 3.3: Multi processor, multi-core, multi-thread

In this figure we have two processors, each with two
cores, each of which has two threads. The threads share
the Level 1 caches. The cores (shaded in the darker gray)
have individual Level 1 caches. All cores of the CPU
share the higher-level caches. The two processors (the
two big boxes shaded in the lighter gray) of course do
not share any caches. All this will be important, espe-
cially when we are discussing the cache effects on multi-
process and multi-thread applications.

17Early multi-core processors even had separate 2nd level caches and
no 3rd level cache.

3.2 Cache Operation at High Level

To understand the costs and savings of using a cache we
have to combine the knowledge about the machine ar-
chitecture and RAM technology from section 2 with the
structure of caches described in the previous section.

By default all data read or written by the CPU cores is
stored in the cache. There are memory regions which
cannot be cached but this is something only the OS im-
plementers have to be concerned about; it is not visible
to the application programmer. There are also instruc-
tions which allow the programmer to deliberately bypass
certain caches. This will be discussed in section 6.

If the CPU needs a data word the caches are searched
first. Obviously, the cache cannot contain the content
of the entire main memory (otherwise we would need
no cache), but since all memory addresses are cacheable,
each cache entry is tagged using the address of the data
word in the main memory. This way a request to read or
write to an address can search the caches for a matching
tag. The address in this context can be either the virtual
or physical address, varying based on the cache imple-
mentation.

Since for the tag, in addition to the actual memory, addi-
tional space is required, it is inefficient to chose a word as
the granularity of the cache. For a 32-bit word on an x86
machine the tag itself might need 32 bits or more. Fur-
thermore, since spatial locality is one of the principles on
which caches are based, it would be bad to not take this
into account. Since neighboring memory is likely to be
used together it should also be loaded into the cache to-
gether. Remember also what we learned in section 2.2.1:
RAM modules are much more effective if they can trans-
port many data words in a row without a new CAS or
even RAS signal. So the entries stored in the caches are
not single words but, instead, “lines” of several contigu-
ous words. In early caches these lines were 32 bytes
long; nowadays the norm is 64 bytes. If the memory
bus is 64 bits wide this means 8 transfers per cache line.
DDR supports this transport mode efficiently.

When memory content is needed by the processor the
entire cache line is loaded into the L1d. The memory
address for each cache line is computed by masking the
address value according to the cache line size. For a 64
byte cache line this means the low 6 bits are zeroed. The
discarded bits are used as the offset into the cache line.
The remaining bits are in some cases used to locate the
line in the cache and as the tag. In practice an address
value is split into three parts. For a 32-bit address it might
look as follows:

Tag Cache Set Offset
31 0

T S O

With a cache line size of 2O the low O bits are used

Ulrich Drepper Version 1.0 15

A more realistic processor with
three levels of cache. Caches
further from the CPU core are
slower, but larger. On my
MacBook Pro I have 32KB L1
Cache, 256KB L2 Cache and 6MB
L3 Cache. In contrast I have 16GB
of main memory!

25 / 32 https://apc523-2020.rtfd.io

Each level of cache has it own access timing and its own latency

memory. Processor performance has improved more rapidly
than memory performance over recent decades. To compen-
sate, modern processors use a deep memory hierarchy with
faster !though smaller and more limited" “cache” memories
located close to the processor. Approximate rules of thumb
for the cost of various operations on processing nodes are
given in Table I. Achieving high performance requires mini-
mizing latency, bandwidth and computation, in roughly that
order. As physical constraints !such as c" are already a no-
ticeable component in many costs, the ratio between proces-
sor and memory performance !particularly latency" should
not be expected to improve significantly in the future.

Fortunately, in most parallel relativistic codes, data
needed for computations on a node are spatially localized to
that node or very nearby; internode latency and bandwidth
are naturally optimized. For example, in particle dominated
simulations, VPIC has smoothly scaled to some of the largest
machines available !several thousand nodes" without any
special tuning effort when the simulation domain could be
statically decomposed to yield an approximately uniform
number of particles per node !even some highly nonuniform
plasmas can be so decomposed, especially if using variable
particle charges".

Accordingly, in VPIC, local data motion is the dominant
concern. Unfortunately, on most processors, programmers
have no control over cache. Rather, a processor heuristically
caches data it anticipates will be used. Given this and Table I,
minimizing local data motion requires grouping data needed
to perform critical operations contiguously and accessing it
sequentially when possible. As computation and storage are
virtually free compared to data motion, replicating computa-
tions and/or data is often worthwhile.

In 3D PIC simulations, there tend to be many particles
per cell on average and more field and particle data per node
than can fit in any cache on that node. In such a simulation,
computation time is heavily dominated by the particle ad-
vance. VPIC is designed for this regime. For the sake of brev-
ity, only particle advance implementation considerations are

given and, unless otherwise stated, simulations will be as-
sumed to be in this regime.

B. Single precision

Single precision implementations can be made to run
significantly faster than their double precision counterparts
as most modern processors provide 4-vector single precision
SIMD capabilities and single precision requires half the data
movement as double precision. For typical time steps, cell
dimensions and particles per cell, discretization error exceeds
single precision arithmetic error. Thus, single precision
should be acceptable for such simulations provided it does
not introduce nonphysical artifacts !e.g., large violations of
otherwise conserved quantities during the simulation". VPIC

uses single precision to help achieve high performance but
takes care to structure operations to minimize its impact;
some cases are discussed below.

Unfortunately, languages like C and FORTRAN are not
expressive enough !e.g., data alignment restrictions" to allow
compilers to use 4-vector SIMD in operations as complex as
those in VPIC. To compensate, VPIC has a C language exten-
sion that allows portable 4-vector SIMD code to be written
and converted automatically to high performance 4-vector
SIMD instructions on a wide variety of platforms. A similar
approach was used in Ref. 3.

A full discussion of single precision issues is beyond the
scope of this paper. For examples of single precision use in
applications with far more demanding precision require-
ments, see Refs. 3 and 16.

C. Single pass processing and particle data layout

Since there is more particle data than can fit in any
cache, it is desirable to limit the number of times a particle is
touched during a time step lest performance be limited by
moving particle data to and from memory. This can be
achieved by processing the majority of the particles in a
single pass. This, combined with the particle advance, yields
VPIC’s inner loop structure,

for each particle
interpolate fields
update momentum
update position
accumulate current

end for

To further minimize the cost of moving particle data,
particle data is stored contiguously, memory aligned, and or-
ganized for 4-vector SIMD. A particle looks like

struct #float dx, dy, dz; int i;
float ux, uy, uz; float q; $

As a result, the inner loop streams through particle data once
using large aligned memory transfers under the hood—the
ideal memory access pattern.

TABLE I. VPIC implementation rules of thumb. Data access estimates the
time to initiate a data transfer between the processor and a level in its
memory hierarchy. Data movement estimates the time to move the next
32-bits in a transfer. Internode figures were obtained from benchmarks of
typical high performance cluster interconnects. The single precision figure
corresponds to a 2.5 GHz processor completing a 4-vector SIMD instruction
every clock. Other rules of thumb were similarly extrapolated from various
data sheets and benchmarks. Similar rules of thumb were applied in Ref. 3.

Operation Time Rel. cost

Data access Internode 10 µs 100 000

!Latency" Memory 50 ns 500

L2 Cache 5.0 ns 50

L1 Cache 1.0 ns 10

Data movement Internode 5.0 ns 50

!32-bit" Memory 0.5 ns 5

L2 Cache 0.2 ns 2

L1 Cache 0.1 ns 1

Single precision FLOP 0.1 ns 1

055703-3 Ultrahigh performance… Phys. Plasmas 15, 055703 !2008"

Downloaded 19 Jan 2013 to 198.125.232.93. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

Figure: Table I in Phys. Plasmas 15, 055703 (2008)
26 / 32 https://apc523-2020.rtfd.io

Writing code which is cache friendly is not easy

Very problem and machine dependent!

• In general, be aware of where the data you want comes from. Modern CPUs
“prefetch” data, i.e. if you ask for element a[i] in an array, very likely the CPU
has also fetched element a[i+1] into the cache. So, use it!

• In most multi-dimensional structured arrays (say a matrix) at least one index is a
“stride” away. This can cause a huge cache miss.

• This is partly unavoidable. Some newer codes use “space filling curves” to index an
array. This ensures that most (not all) array accesses are from close-by in memory.

• If you are using particles (PIC codes) you must try and keep all the particles in a
cell close by. This may require periodically sorting the particles, as otherwise they
will drift arbitrarily far away, killing cache performance.

• If there is a cache aware library USE IT!! These types of optimizations are very
difficult and time consuming, and are best left to experts.

27 / 32 https://apc523-2020.rtfd.io

Additional complications come about as modern CPUs allow the
same operation to be applied to more than one number

Figure: Scalar operations are applied sequentially to one register after another (left). SIMD
operations apply the same operation (“Single Instruction”) to “Multiple Data” locations. For
this the CPU provides special registers that can store 4 (or more) floating point numbers.

28 / 32 https://apc523-2020.rtfd.io

SIMD and “Vectorization”

• Modern processors have vector instructions that make it possible to do operations
on all elements of a vector simultaneously.

• Total size of each vector can be 64 bits (MMX), 128 bits (XMM), 256 bits (YMM)
and, 512 bits (ZMM).

• Often, we can rearrange code to ensure same floating-point operation is done on
multiple data elements at the same time.

• This depends on the instruction sets available on the CPU you have: these
instruction sets go by strange names like “SSE2”, “AVX”, “AVX512” etc.

• However, programming with these instructions sets/registers is not easy! Compilers
can often vectorize automatically, but this is best done by a human who
understands the algorithm in detail.

• Note: not all algorithms are suitable for vectorization! Luckily, many PDE and
particle solvers can be vectorized, resulting in significant gain in speed (2× to 4×).

29 / 32 https://apc523-2020.rtfd.io

SIMD programming is done via CPU “intrinsics”

These are functions which the CPU vendor provides (Intel, AMD, ARM ...).
Unfortunately, there is no standardization (say between Intel/AMD and ARM), and the
calls look bizarre and complicated.

The most detailed description on how to optimize C++ code (cache, SIMD, ...) is on
Agner Fog’s blog. See https://www.agner.org/optimize/. Excruciating details but
his manual on “Optimizing Software in C++” worth consulting if you care about speed.

He has a C++ library that abstracts always much of the gory details of SIMD
programming. See https://github.com/vectorclass. See also NSIMD library
https://github.com/agenium-scale/nsimd.

30 / 32 https://apc523-2020.rtfd.io

https://www.agner.org/optimize/
https://github.com/vectorclass
https://github.com/agenium-scale/nsimd

Cache-awareness and SIMD usage makes Eigen very fast

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10 100 1000

M
F

LO
P

S

matrix size

matrix matrix product

’eigen3’
’GOTO2’

’INTEL_MKL’
’eigen2’
’ATLAS’

’gmm’
’ublas’ Eigen performance with matrix size

for a matrix-matrix multiplication.
For other benchmarks see
http://eigen.tuxfamily.org/

index.php?title=Benchmark

31 / 32 https://apc523-2020.rtfd.io

http://eigen.tuxfamily.org/index.php?title=Benchmark
http://eigen.tuxfamily.org/index.php?title=Benchmark

Some final thoughts

For serious computational work, thought must be given to algorithm and code optimization.

• Hands down, it is more optimal to use a “better” algorithm than optimize a crappy one. Example:
FFTs will beat naive N2 algorithms for any useful N.

• However, even good algorithms need major effort in optimizing for daily use in production code. (If
you only care about a small “throw-away” application then this effort is not worth it). If your code
is widely used, then pressure on optimization is higher.

• Remember that not all algorithms will benefit from cache and SIMD vectorization as much as did
matrix-matrix multiplication. However, in general it is a good idea to be aware of memory
access patterns in your code.

• Despite complexity, SIMD vectorization is often needed to make good use of modern processors.
Use libraries! Hand-written SIMD code is ugly and likely hard to maintain.

Next lecture: some guidelines on software engineering, programming languages, parallel programming
and perhaps an overview of GPU programming.

32 / 32 https://apc523-2020.rtfd.io

