Lecture 13: Software and Hardware Issues in Computational

Physics

Ammar H. Hakim (ahakim@pppl.gov) *

LPrinceton Plasma Physics Laboratory, Princeton, NJ

Princeton University, Course APC523, 2020

Goal: Hardware and software for Computational Physics

Our computation physics codes must run somewhere: Making code work on modern
hardware and writing long-lived and usable software is highly non-trivial task. Difficult
and under appreciated art!
Modern computer hardware is changing: new architectures are emerging (too)
rapidly.
Pressure on hardware: make chips faster but consume less energy. Contradictory goals.
New directions: many (100s or 1000s) more low-power “cores” with lower clock speed.
Funded by Exascale Project in the US (). Aims
to build machines that do 10'® FLOPS!
Software is expensive, even (and especially) when it is free!
Software development is labor intensive. Takes time, and humans get tired, need to
sleep, eat, take vacations (and hide from viruses).
More importantly: writing good code is an art. Can't be learned only from books. Need
to apprentice yourself with a Master Craftsman. Process is slow, can take years to
perfect art.

https://www.exascaleproject.org

9)PPPL
Some History: Charles Babbage, (1791-1871)

Considered to be the “Father of the computer”.
Designed mechanical machines to compute
values of polynomial functions. Not completed in
his lifetime. Built by Science Museum, London in
1991 (printer he designed constructed in 2000)
Accomplishment of greatest genius was the
invention of the “Analytical Engine”. General
purpose computer, with all essential ideas now
found in modern computer hardware worked out
in detail.

See links on lecture website. See also cyberpunk
novel “The Difference Engine”. Explores dystopian

alternate history in which Analytical Engine built.
https://apc523-2020.rtfd.io

Some History: John von Neumann, (1903-1957)

Polymath of great genius: mathematician,
physicist and computer scientist. Modern
computer architecture (von Neumann
architecture) named after him.

Influential machine designed at Institute of
Advanced Study from 1945-1951; 40-bit “word”
with two 20-bit instructions; 1024 words of
memory.

Also wrote first and highly influential paper on
error analysis on Gaussian elimination with
Herman Goldstine: created field of numerical
analysis. See review in SIAM Rev. 53 (4),
pp.607-682.

https://apc523-2020.rtfd.io

Many others, some with Princeton background

The history of computing is complex and many people have played key role, many with
Princeton background (like von Neumann who was at |AS)

Alan Turing. Towering genius in theoretical computer science, got his math Ph.D
from Princeton University. Invented “Turing machines”, an abstract model for
universal computing machine. Very influential and part of modern CS curriculum.
Worked with von Neumann on philosophy of Al and machine computability.

Not so well known: Charles Sander Peirce (“Purse”). Realized that logical
operations could be carried out by electrical circuits, way back in 1886, decades
before such machines were built! See letter in which first logic circuit is described
to his former student Allan Marquand of Princeton. (Science Library near GIS and
book stacks). Rather sad letter, written when C.S Peirce was very poor and had to
borrow money from Marquand. (Art library named after Marquand).

A note on computer speeds and prefixes

Just a reminder
Giga = billion (10°)
Tera = trillion (10%2)
Peta = 1015
Exa = 108 (billion times faster that Gigascale)

Typical processors are in the GHz range. (My MacBook Pro clocks at 2.8 GHz and has
4 cores). Typical laptop drives are in terabyte range. Largest current machines provide
10s of Petaflops computing powers with new exascale machines available in a 2-5 years.

What drives single processor performance?

Moore's “Law” (more of an industry observation) “The number of transistors
incorporated in a chip with approximately double every 24 months”

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

7/ 32

Ultimately, it boils down to the smallest
feature sizes that can be lithographed. At
one point, people thought it would
bottom out at 28 nm. However many
companies have 10 nm and 7 nm in mass
production, with 5 nm around the corner.
Eventually, individual processors are not
going to get much faster. It is hard to
shrink semiconductor feature sizes any
further. Fundamental limits from physics
(speed of light, EM cross-talk, heat
generation, ...

At present, processor hardware architecture is in significant flux

There is a trend away from faster, complex, chips to chips with simpler, less fast “cores”
(many-core machines)

Power consumption is a huge issue with major supercomputer installations. If we go along the path
we are on now, a small power-plant will be required to simply run the cooling systems of large
machines.

With the rise of handheld devices (smartphones, tablets, ...) there is a drive towards low-cost and
low-power chips. Significant work in ARM chips is going on. (These are Reduced Instruction Set
Computer (RISC) chips, designed to be cheap and low power)

Use of Graphics Processing Units (GPUs) in HPC is also increasing.

It is incredibly hard for software to keep up with hardware. Software is written by humans, who
need to eat, sleep, take vacation, etc. Also, software is extremely complicated, more so than the
hardware it runs on.

A major applied mathematics, computational physics and software engineering challenge is to design
algorithms which take advantage of this complicated zoo of emerging hardware.

Two major types of parallel programming

To remain abstract, | will use “Processing Unit" (PU) as a short-hand. It could mean
independent CPUs, threads or cores.

In Shared memory parallel programming, different PUs may run different code, but
have access to the same memory. Synchronization of read/writes is a major issue.
Shared memory systems usually use “threads”. These are separate code execution

paths. A CPU runs a thread for a bit, stops it, and then runs another thread.
Complex programs can have hundreds of threads.

In the second type, distributed memory, each PU executes the same code, but on
their own portions of the data. Communication is done via messages. This is the
most common pattern in code which solves PDEs (either via grid or PIC methods).

How much can parallel algorithms help? Amdahl’s Law

Amdahl wrote an important paper in 1967 (“Validity of the single processor approach
to achieving large scale computing capabilities”). Basically, he advocates using serial
processing. Paper starts out: “For over a decade prophets have voiced the contention
that the organization of a single computer has reached its limits and that truly
significant advances can be made only by interconnection of a multiplicity of computers
in such a manner as to permit cooperative solution. Demonstration is made of the
continued validity of the single processor approach and of the weaknesses of the
multiple processor approach in terms of application to real problems and their
attendant irregularities”

This paper has the statement to what is now known as “Amdahl’'s Law”. It is a very
good (and quick) read.

Incidentally: Amdahl never actually writes any equations in his paper, but states it in
words! (Perhaps he didn't know how to typeset equations?)

mdahl's Law shows the limitation of parallel programming wi
constant work loads

Let a process take unit time to run. Then, ideally, with p PUs, the run time should be
1/p. Amdahl points out that in reality, only a fraction f can sped up, the remaining
1 — f is “irreducibly” serial. Hence, the run-time is

Ta(p,f)=f/p+ (L)

Hence, speedup will be

1
S —
Note that if f < 1, then
1
Sa(00, f) = 1-7f

which is independent of number of PUs!

Amdahl’s Law for various parallelizable fractions

90
80r

— =09 ||
— f=0.95
— f=0.99

0 100 200 300 400 500
Number of PUs

_____®per
Some comments on Amdahl’s Law

Amdahl's law is optimistic in the sense that it assumes that the parallelizable
fraction speedup scales linearly. Things get worse with (inevitable) overhead say
from messaging, etc.

Amdahl’s law is pessimistic in that it assumes that we want faster results for the
same problem. This is not true for most problems of interest.

In reality, if someone gives us a bigger computer, we want to do a bigger problem. This
is crucial to getting around the limitations of Amdahl’s Law.

Assume that if f is the parallelizable fraction of a serial job, then with p PUs we will
run a p times bigger job. Then, the speedup will be

Se(p,f) =(1—1f)+1fp

Note that now, the speedup is linear in p! Essentially, the cost of the serial part is
amortized by going to a bigger problem. This is called Gustafson’s Law.

These two speedup laws distinguish strong and weak scaling

The strong scaling of a problem is the actual speedup one can achieve for a problem of
fixed size, but increasing PUs. Amdahl’s law bounds such a scaling. (In general, actual
strong-scaling will be worse than predicted by Amdahl's Law)

The weak scaling of a problem is the actual speedup one can achieve for by problem
with size increasing linearly with number of PUs. Gustafson's law bounds such a

scaling. (In general, actual weak-scaling will be worse than predicted by Gustafson's
Law)

In general, most real-life problems will scale in a more complicated manner. For
example, for some problems are |/O and/or communication bound. Others are bound
by codes which are not parallel at all (for example, some old legacy serial code might
be needed).

) ;.Y
The Corollary of Modest Potential
This term was coined in an important paper “Type Architectures, Shared Memory, and

the Corollary of Modest Potential” by L. Snyder in 1986. (Ann. Rev. Comput. Sci.
1986. 1:289-317).

Consider a time-dependent 3D problem on a rectangular grid, with n number of cells in
each direction. Then, assuming that the number of time-steps to get to a given time is
proportional to n, the computational time will scale as

Tm(n) ~ n*

(There are n3 cells, and n steps to take). Hence, even if we get linear scaling from
Gustafson's law, the scaling of n with number of PUs, p, will be sub-linear. In this
particular case,

n~ pt/t

Hence, to do a problem 100 times bigger, we will need 108 more computing resources!
15 / 32 e https://apc523-2020.rtfd.io

Can be worse than predicted by The Corollary of Modest Potential

Note that most algorithms are not parallel in time! This means, that for a 3D problem,
we can only use ~ n® more PUs, and need to run for a factor of n longer.

What do all of these (seemingly pessimistic) scaling laws teach us?

This does not mean that things are hopeless! In fact, what this means is that parallel
algorithms must go hand-in-hand with better physics models, which do not require such
high resolutions. For example,
Instead of solving Navier-Stokes (NS) equations, one solves Reynolds Averaged NS
(RANS) equations, or uses Large Eddy Simulation (LES) techniques
Or, instead of tracking very particle in a large system, one performs statistical
averaging and uses expensive particle/kinetic calculations to provide occasional
validation
Or, instead of doing Vlasov-Maxwell (6D, with plasma frequency time-scales), one
uses (in appropriate limits) gyrokinetic equations (5D, with turbulent fluctuation
time-scales), or fluid or other appropriate approximations.

Conclusion: Ammar’s Corollary of Cynical Progress

It is easy to fill up the biggest computer with FLOPs and bytes. It is much harder to do
useful science.

Another way to put it: in a Darwinian process with pressure to use bigger-and-bigger
machines, one may select for less-than-desired traits

Anatomy of a Very “Simple” Problem

Numerical Methods 101: Write a function to multiply two square matrices

Recall that
for (auto i=0; i<N; ++i)
for (auto j=0; j<N; ++j) { CU:ZAikBkj
C(i,j) = 0.0; k
for (auto k=0; k<N; ++k)
C(i,j) += A(i,k)*B(k,j); The solution in C++ is very simple:
} However, how efficient is this solution?

There is a long history of linear algebra libraries

Designing efficient linear algebra routines is not trivial, even for such “simple” matrix-matrix
multiply problems.

Most widely used libraries are BLAS (Basic Linear Algebra System) on top of which is built
LAPACK (Linear Algebra Package).

BLAS provides “basic” routines (matrix-vector, matrix-matrix multiplication, etc). LAPACK
provides linear solvers, eigensystem finders, Singular Value Decomposition (SVD), etc.

Created originally by Jack Dongara in 1970s. Continues to be developed and optimized. Many
platforms (Apple, Intel, ...) supply their own highly optimized BLAS/LAPACK libraries. Other
“self-tuning” implementations also exist (see ATLAS).

Modern libraries using very clever C++ techniques are also being created and extensively used.
The best example | know of is the Eigen C++ library (see).

Lets compare our hand-written code with Eigen and BLAS. (Look at code)

http://eigen.tuxfamily.org/

DPPPL
What do Eigen/BLAS know that we don't?

Cache usage and use of SIMD! instructions. Modern processors have a hierarchy of
memory locations they can access, with very different access speeds.

A “cache” is an area of memory which is close to
the CPU core. The memory access to the cache is

Bus very fast, compared to access to main memory. The
< difference comes about as main memory is Dynamic
1 RAM (DRAM) v/s cache is SRAM. DRAM circuits
are tiny (hence more of them can be on a single
Cache <— CPU Core chip) v/s SRAM circuits which are very large.

However, DRAM essentially relies capacitive
discharge, which is very slow.

A very simple cache configuration

!Single Instruction Multiple Data

Eigen and BLAS preload as much data as possible in the fast cache

Using clever techniques, these libraries preload as much of the matrix data as
possible into the cache

Once loaded, the CPU can fetch this data very rapidly to do the multiplication and
sums.

On modern CPUS FLOPS are basically free. For example, most operations take a
single (even fewer) cycle. It is the memory access which is very expensive (5-20
cycles for cache, and 100s of cycles for main memory). Hence, to improve
performance, one must make sure that cache is used in an optimal manner.

) ;.Y
Why is our matrix-matrix multiply code so slow?

Is it because of the data access pattern in matrix-matrix multiply?

Row-major order | Column-major order
y—Lio—813 &1y &1p Gq3
Aoty 8/ 8o [g
Ogf—lyg—s3 ag, a4, a4,

In row major order (left) the rows are kept contiguously. To be cache friendly one must
increment the column index (j) faster. In column major order (right) the columns are kept
contiguously. To be cache friendly one must increment the columns i index faster. For
matrix-matrix multiply this is impossible, as one or either indexing will incur a cache miss!

So how to overcome this seemingly “impossible” situation?

The problem is that the matrix-matrix product is an inner
product of columns of A with the rows of B. So, lets copy the
transpose of B matrix to a temporary matrix T. l.e. T = B'.
Then, the matrix-matrix multiply becomes

// transpose
Matrix T(N,N);
for (auto i=0; i<N; ++i)
for (auto j=0; j<N; ++j)
T(i,j) = B(j,1); CU:ZAiijk
K

for (auto i=0; i<N; ++i)
for (auto j=0; j<N; ++j) { Now, note that if the data is stored in row major order, both

C(i,j) = 0.0; matrices are accessed in a cache friendly manner!

for (auto k=0; k<N; ++k)

N] j This is problem and chip dependent: likely does not matter
C(i,j) += AL,k *T(j,k);

much for “small” matrix sizes.

DPPPL

Modern CPUs very complicated: multiple levels of caches, SIMD ...

A more realistic processor with
; Bus,

three levels of cache. Caches
further from the CPU core are
slower, but larger. On my
MacBook Pro | have 32KB L1
Cache, 256KB L2 Cache and 6MB
L3 Cache. In contrast | have 16GB
¢ t of main memory!

L1d Cache <— CPU Core

L2 Cache <«— L1i Cache

Each level of cache has it own access timing and its own latency

Operation Time Rel. cost

Data access Internode 10 ps 100 000
(Latency) Memory 50 ns 500
L2 Cache 5.0 ns 50

L1 Cache 1.0 ns 10

Data movement Internode 5.0 ns 50
(32-bit) Memory 0.5 ns 5
L2 Cache 0.2 ns 2

L1 Cache 0.1 ns 1

Single precision FLOP 0.1 ns 1

Table | in Phys. Plasmas 15, 055703 (2008)
26 / 32 . nttps://apcB23-2020.rtfd o

Writing code which is cache friendly is not easy

Very problem and machine dependent!

In general, be aware of where the data you want comes from. Modern CPUs
“prefetch” data, i.e. if you ask for element a[i] in an array, very likely the CPU
has also fetched element a[i+1] into the cache. So, use it!

In most multi-dimensional structured arrays (say a matrix) at least one index is a
“stride” away. This can cause a huge cache miss.

This is partly unavoidable. Some newer codes use “space filling curves” to index an
array. This ensures that most (not all) array accesses are from close-by in memory.
If you are using particles (PIC codes) you must try and keep all the particles in a
cell close by. This may require periodically sorting the particles, as otherwise they
will drift arbitrarily far away, killing cache performance.

If there is a cache aware library USE IT!l These types of optimizations are very
difficult and time consuming, and are best left to experts.

!!!l!lona| comp||ca!|ons come a!ou! as mo!ern !!!S a”ow !”e

same operation to be applied to more than one number

(a) Scalar Operation (b) SIMD Operation

+ B, = G,] []
R ™ N N I T R
A B c
o B

Scalar operations are applied sequentially to one register after another (left). SIMD
operations apply the same operation (“Single Instruction”) to “Multiple Data" locations. For
this the CPU provides special registers that can store 4 (or more) floating point numbers.

28 / 32

https://apc523-2020.rtfd.io

SIMD and “Vectorization”

Modern processors have vector instructions that make it possible to do operations
on all elements of a vector simultaneously.

Total size of each vector can be 64 bits (MMX), 128 bits (XMM), 256 bits (YMM)
and, 512 bits (ZMM).

Often, we can rearrange code to ensure same floating-point operation is done on
multiple data elements at the same time.

This depends on the instruction sets available on the CPU you have: these
instruction sets go by strange names like “SSE2", “AVX", “AVX512" etc.

However, programming with these instructions sets/registers is not easy! Compilers
can often vectorize automatically, but this is best done by a human who
understands the algorithm in detail.

Note: not all algorithms are suitable for vectorization! Luckily, many PDE and
particle solvers can be vectorized, resulting in significant gain in speed (2x to 4x).

SIMD programming is done via CPU “intrinsics”

These are functions which the CPU vendor provides (Intel, AMD, ARM ...).
Unfortunately, there is no standardization (say between Intel/AMD and ARM), and the
calls look bizarre and complicated.

The most detailed description on how to optimize C++ code (cache, SIMD, ...) is on
Agner Fog's blog. See . Excruciating details but
his manual on “Optimizing Software in C++" worth consulting if you care about speed.

He has a C++ library that abstracts always much of the gory details of SIMD
programming. See . See also NSIMD library

https://www.agner.org/optimize/
https://github.com/vectorclass
https://github.com/agenium-scale/nsimd

Cache-awareness and SIMD usage makes Eigen very fast

matrix matrix product
20000

“eigen3’
'GOTO2" ———
18000 - 'INTEL_MKL'

16000 -

Eigen performance with matrix size
for a matrix-matrix multiplication.
For other benchmarks see

14000 [

12000

MFLOPS

10000 [

8000

6000 -

4000

2000

0

L T
10 100 1000
matrix size

http://eigen.tuxfamily.org/index.php?title=Benchmark
http://eigen.tuxfamily.org/index.php?title=Benchmark

Some final thoughts

For serious computational work, thought must be given to algorithm and code optimization.

Hands down, it is more optimal to use a “better” algorithm than optimize a crappy one. Example:
FFTs will beat naive N? algorithms for any useful N.

However, even good algorithms need major effort in optimizing for daily use in production code. (If
you only care about a small “throw-away” application then this effort is not worth it). If your code
is widely used, then pressure on optimization is higher.

Remember that not all algorithms will benefit from cache and SIMD vectorization as much as did
matrix-matrix multiplication. However, in general it is a good idea to be aware of memory
access patterns in your code.

Despite complexity, SIMD vectorization is often needed to make good use of modern processors.
Use libraries! Hand-written SIMD code is ugly and likely hard to maintain.

Next lecture: some guidelines on software engineering, programming languages, parallel programming
and perhaps an overview of GPU programming.

