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Goal: Hardware and software for Computational Physics

Our computation physics codes must run somewhere: Making code work on modern
hardware and writing long-lived and usable software is highly non-trivial task. Difficult
and under appreciated art!

• Modern computer hardware is changing: new architectures are emerging (too)
rapidly.
◦ Pressure on hardware: make chips faster but consume less energy. Contradictory goals.
◦ New directions: many (100s or 1000s) more low-power “cores” with lower clock speed.

• Software is expensive, even (and especially) when it is free!
◦ Software development is labor intensive. Takes time, and humans get tired, need to

sleep, eat, take vacations (and hide from viruses).
◦ More importantly: writing good code is an art. Can’t be learned only from books. Need

to apprentice yourself with a Master Craftsman. Process is slow, can take years to
perfect art.
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How fast (in principle) is my Mac?

Mid 2015, Intel Core i7 chip. See See this page for info on chips which ship with different Macs.
Strangely, this information is not in the “About this Mac” tab and one needs to go digging for it.

• Clock-speed is 2.8 GHz. So we have 2.8 GFLOPS/core (assuming a FLOP can be done in 1 cycle).

• However, SIMD can potentially do 4 FLOPS per cycle (for float. For double SIMD is 2 FLOPS
per cycle). Giving 11.2 GFLOPS/core.

• Often there are are multiple FPUs (floating point units) on a core. Mine has 2 FPUs (AFAICT.
The specs say total 8 “threads” which I assume means 2 FPUs per-core), but some chips have 4
FPUs. So that brings it to 22.4 GFLOPS/core.

• With 4 cores this gives 89.6 GFLOPS (half of that for double precision numbers) total.

Our Eigen double matrix-matrix multiply peaked at about 8 GFLOPS on a single core. Float
matrix-matrix multiple peaked at about 15 GFLOPS.

Eigen’s performance comes from “tiling” the matrix and using SIMD instructions. (Most PDE solvers
can’t always use such tricks. Linear algebra is very specialized. Best left to experts).
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It is hard to achieve anything close to peak-performance

• Memory access will slow down a program by a lot: FLOPS are not the only thing
that matter!

• If you get between 10-20% peak you are in (very) good shape. More likely, 5% peak
is reasonable.

• My team’s code (Gkeyll) gets 500 GFLOPS for some compute kernels on an Intel
Skylake chip (peak-performance of 3 TFLOPS). Does not use SIMD vectorization
(due to our code structure SIMD is hard to use). This is pretty good.

• Similar performance is obtained on a Mac: 12 GFLOPS on a 4-core Mac. (Skylake
chips have 48 cores and are 3× faster).

Study Agner Fog’s optimization manuals if you are serious about optimization.
PU PICSciE (Research Computing) offers workshops.
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Some (brief) notes on software engineering

If you read only one book on Software Engineering, it should be the “Mythical Man Month”.

TL;DR Version:

• Writing large-scale software programs is hard.

• Techniques that work on small projects don’t scale to
large projects. It is important to learn by looking at good,
large code bases.

• Most of physicists won’t work on such projects, but these
are now becoming increasingly important. Consider the
SCIDAC program, which supports huge codes, running
into 100K+ (even millions of) lines of code (LOC), with
multiple developers, are massively parallel and are
designed to solve very complex physical problems.
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Some (brief) notes on software engineering

Large-scale computational physics software is, in some ways, even harder, as it is not clear if one is
solving the equations correctly (verification) and if one has the correct model in the first place
(validation). Regression testing and careful benchmarks are essential to build confidence.

Some general recommendations for “small” projects (thesis level)

• Unless you are working on an existing “old” code, use modern C++. It is hard to find libraries, and
general support for high-level things in Fortran (scripting, flexible input files, ...). Hard to find jobs.

• Don’t invent your own. There are a huge amount of existing math libraries (LAPACK/BLAS, GSL,
PETSC, Eigen, Boost, FFTW, SuperLU, HDF5 ....), and it is unlikely you can write a better
routine in a short amount of time.

• Use a version control system, even for small projects. Git is a good option, and code can be hosted
for free on github or bitbucket.

• Use an automated build system. CMake has a lot of momentum, and is a very good choice. There
are other possible choices too. I like Waf a lot.

A reasonable stack: C++ and Eigen with CMake build system, with HDF5 or NETCDF output format,
GSL, PETSC, ..., and post-processing using Python (Anaconda Python is an excellent free distribution
with everything you need to do viz in 2D and 3D).
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Programming languages for computational physics

Somewhat personal biased views:

• Modern large-scale computational physics, at least the core computational kernels, should be done
in C++: produces highly optimized code, and has huge industry support, with excellent compilers
available on every conceivable platform. Vast majority of time-critical code anywhere is written in
C or C++.

• Why not C++? It is difficult to learn, and really ugly.

• Modern C++ (post 2011) has fixed some historical issues, with very elegant new features useful in
computational physics added recently (including in-built parallelism, with GPU and other
accelerator array data-structures being proposed as part of a future standard).

• An ideal combination: C++ called from a scripting language like Python or Lua. Done extensively,
for example in video games and major Internet appliances. My own code uses C++ and LuaJIT.

JIT: Just-in-Time compilers generate machine code on-the-fly. Can be very efficient but need some care.
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Two major types of parallel programming in computational physics

To remain abstract, I will use “core” as a short-hand. It means an independent
execution unit. Depends on context (CPU core, thread, etc)
• In Shared memory parallel programming, different cores may run different or same

code, but have access to the same memory. Synchronization of read/writes to
memory is a major issue. Needs locking mechanism.

• Shared memory systems usually use “threads”. These are separate code execution
paths. A core runs a thread for a bit, stops it, and then runs another thread.
Complex programs can have hundreds of threads.

• In the second type, distributed memory, each core executes the same (or less often,
different) code, but on their own portions of the memory. Can’t directly touch
memory owned by others. Communication is done via message passing. This is the
most common pattern in code which solves PDEs (either via grid or particle
methods).

Not the only type of parallel or distributed programming!
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Concurrency is important, not just in computational physics

Think of Facebook, Twitter, WhatsApp or Amazon AWS. These are massively
concurrent systems with millions of people connected at the same time, commenting,
sending messages etc. Extremely difficult problem!

• Many specialized libraries for such applications. Example, ZeroMQ (also based on
message passing. Almost magical library for concurrency) and Redis (in-memory
concurrent database. Insanely beautiful. Used in Twitter “Timeline” feature).

• Specialized languages developed for massively concurrent systems. Example, Erlang.
Designed to be fault tolerant and massively distributed. Used in WhatsApp. Other
example is the Go programming language.

• These specialized languages are functional languages that have immutable
datastructures, making concurrency much easier to implement.
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The Message Passing Interface (MPI) Standard

MPI is the de-facto standard for writing distributed memory programs, i.e. code which runs on a cluster
of computers. Unlikely to go away even with future architectures.

These programs have a (mostly) single instruction set that runs on each core, however, on different
portions of the data. Messaging is done by explicitly sending messages between cores.

Problem: You are given a (huge) array of numbers, ai for 0 ≤ i < N. Compute the sum
∑

i 1/2a[i ].

Test this with a[i ] = i . (i.e. compute the sum
∑N−1

i=0 1/2i )

This is a type of map-reduce pattern: apply a function to each element (map operation), and find its
sum (reduce operation). An old concept from LISP, made famous by Google, and now used extensively
for “Big Data” applications. Also, many numerical codes work in this way.

We will use this example to learn some MPI. Not trivial problem. Try this for homework on your own.
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Basic design pattern of an explicit, parallel PDE solver

Each simulation begins with
• Domain decomposition of grid
• Initialization of fields on local portion of grid

and then in a loop
• Update local portion of fields using algorithm (RK updates, finite-differences,

upwinding, etc.)
• Communicate with neighboring cores to “synchronize” field data before next

time-step is taken.

Periodically, field data is written out. Here there are two choices
• Each core writes to its own file. These can be combined as post-processing to do

analysis/visualization
• All cores write to the same file concurrently. Avoids need of combining later, but

can be difficult to do. (Although there are libraries like HDF5 and NETCDF which
you can/should use).
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Domain decomposition in 2D/3D

We saw an example of 1D domain decomposition. The idea was to split the domain up
into approximately equal pieces (“load balanced”), and each piece is then handled by a
separate core.

Domain decomposition is much harder in higher dimensions, specially when using
unstructured grids.

Question: You are given a 100 × 100 grid. How will you split equitably into p pieces?

In general, this is a non-trivial problem. Imagine p = 5. How would you do this? Some
constraints: each sub-domain should have about the same volume, the surface area of
each domain should be as small as possible. This is an integer linear programming
problem.

Often it is simpler to use a Cartesian product decomposition, by specifying the number
of “cuts” in each direction.
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An example of a Cartesian decomposition into four sub-domains

Figure: A simple domain decomposition of a 100 × 100 domain in 4 sub-domains. Each colored
block is handled by a separate core.

13 / 28 https://apc523-2020.rtfd.io



An example of a general decomposition into five sub-domains

Figure: A general domain decomposition of a 100 × 100 domain in 5 sub-domains. Each colored
block is handled by a separate core.
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For unstructured grids domain decomposition is more complex

Domain decomposition on the
exterior of the space shuttle.
Notice the complicated
sub-domain shapes. To create
these decomposition is a
non-trivial problem, and libraries
should be used. Communication
between sub-domains is very
complex in such situations, and
requires significant book-keeping.
(Caveats about unstructured
meshes)
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Use Ghost/Skin cells to communicate between sub-domains

Consider the finite-difference approximation to g = fxx

gi =
fi+1 − 2fi + fi−1

∆x2

Now let I be the last cell on a sub-domain boundary. Then, we have

gI =
fI+1 − 2fI + fI−1

∆x2

Note we do not know what fI+1 is as it is outside the sub-domain. I.e. it either lies
outside the physical boundary or on another sub-domain.

These outside cells are called “ghost cells”. They are very useful for applying boundary
conditions and are essential for synchronization across cores when doing a parallel job.
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Ghost cells are the layer of cells outside sub-domain

The layer of cells on the right
(pale blue) are the ghost cells for
the sub-domain (blue). They lie
outside the sub-domain.
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Skin cells are layer of cells inside sub-domain

The layer of cells on the left (pale
green) are the skin cells for the
sub-domain (blue). They lie inside
the sub-domain.
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To synchronize copy data from skin-cells to ghost-cells

Figure: Before each time-step we must copy data from pale green region on right sub-domain
into the pale blue region on left sub-domain.
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Ghost/Skin cell distribution is determined by the stencil

(c) Standard 9-point stencil

(d) Skewed 9-point stencil

r2
9uij =

1

6h2
[ui�1,j�1 + 4ui�1,j + 4 ui+1,j + ui+1,j+1�

�20ui,j + ui+1,j�1 + 4ui,j�1 + 4ui,j+1 + ui�1,j+1]

It can be shown that applying this approximation to the
true solution and expanding in a Taylor series, we obtain:

r2
9u(xj, yk) = r2u + h2

2 [uxxxx + 2uxxyy + uyyyy] + O(h4).

2

Figure: 5-point stencil (left) and 9-point stencil (right) for a Laplacian in 2D. Note that the
9-point stencil needs corner cells. This means that parallel communication must involve
neighbors which share a corner (and not just face neighbors). This can significantly complicate
communication.

20 / 28 https://apc523-2020.rtfd.io



For unstructured meshes, things can get very nasty

UHFRQVWUXFWLRQV IRU VPRRWKO\ YDU\LQJ VROXWLRQV� DQG UHGXFHV WR D IDVWHU 79' UHFRQVWUXFWLRQ �OLPLWHG

UHFRQVWUXFWLRQ� ZKHQ RVFLOODWRU\ EHKDYLRU LV H[SHFWHG� 7KH &(12 PHWKRG FRPELQHV WKH EHVW RI ERWK (12

VFKHPHV ZLWK WKHLU KLJK�RUGHU DFFXUDF\ DQG H[WUHPD SUHVHUYDWLRQ >�����@� DQG 79' VFKHPHV IRU VSHHG DQG

VWDELOLW\� 7KH PHWKRG LV GHVLJQHG WR TXLFNO\ HYDOXDWH KLJK�RUGHU DFFXUDWH VROXWLRQV ZLWK VKDUS LQWHUIDFHV

DURXQG VKRFNV DQG GLVFRQWLQXLWLHV�

7KH &(12 VFKHPH RQO\ UHTXLUHV WZR VWHQFLOV DV GHSLFWHG LQ )LJ� ���� D ORZ�RUGHU DQG KLJK�RUGHU VWHQFLO� 7KH

KLJK�RUGHU VWHQFLO LV XVHG WR JHQHUDWH D KLJK�RUGHU DFFXUDWH UHFRQVWUXFWLRQ RI WKH FRQWLQXRXV VROXWLRQ� 7KLV

KLJK�RUGHU DFFXUDWH UHFRQVWUXFWLRQ UHSUHVHQWV WKH PD[LPDO RUGHU RI DFFXUDF\ DFKLHYDEOH E\ WKH +2)90�

:KHUH WKH VROXWLRQ LV GLVFRQWLQXRXV� D 79' OLPLWHG UHFRQVWUXFWLRQ LV XVHG� EDVHG RQ WKH VPDOOHU ORZ�RUGHU

VWHQFLO ZKLFK LV GHVLJQHG WR UHFRQVWUXFW D k = 1 RU D VHFRQG�RUGHU DFFXUDWH SRO\QRPLDO UHFRQVWUXFWLRQ�

)LJXUH ���� ([DPSOH &(12 VWHQFLOV IRU FHQWUDO HOHPHQW �GDUN EOXH�� +LJK�
RUGHU k = 6 VWHQFLO �PHGLXP�OLJKW EOXH� DQG ORZ�RUGHU k = 1 VWHQFLO
�PHGLXP EOXH�� ,I WKH KLJK�RUGHU VWHQFLOȏV UHFRQVWUXFWLRQ LV QRW VPRRWK� WKHQ
WKH ORZ�RUGHU VWHQFLO LV XVHG LQVWHDG�

)RU D JLYHQ HOHPHQW λ� WKH FULWHULD IRU XVLQJ WKH OLPLWHG YHUVXV KLJK�RUGHU UHFRQVWUXFWLRQ LV EDVHG RQ D

VPRRWKQHVV LQGLFDWRU Sλ� 6PRRWKQHVV LQGLFDWRUV GR QRW GHILQH D VSHFLILF PHWKRG IRU PHDVXULQJ

VPRRWKQHVV� DQG DUH JHQHUDOO\ YHU\ FRPSOLFDWHG IRU QRQ�UHFWLOLQHDU PHVKHV� 7KH JRDO RI D VPRRWKQHVV

LQGLFDWRU LV WR TXLFNO\ JHQHUDWH D URXJK JXHVV RI WKH OHDVW VTXDUHV UHVLGXDO PDJQLWXGH RI WKH UHFRQVWUXFWLRQ�

7KH VPDOOHU Sλ LV� WKH EHWWHU WKH ILW� DQG PRUH ȏVPRRWKȏ WKH UHFRQVWUXFWLRQ LV� :KHQ Sλ LV DERYH VRPH

WKUHVKROG S � WKHQ WKH KLJK�RUGHU UHFRQVWUXFWLRQ LV UHSODFHG ZLWK WKH OLPLWHG UHFRQVWUXFWLRQ�

7KH WZR UHFRQVWUXFWLRQV DUH RXWOLQHG DV IROORZV�

ȗ /LPLWHG UHFRQVWUXFWLRQ�

��

To update dark blue cell, some scheme would need
only face neighbors. However, some higher-order
methods would need a bigger stencil, shown here in
pale blue for a third order finite-volume scheme.
The ghost/skin cell determination and parallel
communication is very complicated.
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Alice and Bob eat lunch

Imagine Alice is in one city, and Bob in another. How can we ensure Alice eats lunch
before Bob?

Note that we can’t rely on clocks, as clocks may not be accurate, and not every event
(in life as well a computer) has a time-stamp associated with it.

Obvious solution: Bob waits for Alice to call him after she eats lunch. Then Bob eats
lunch. (Blocking receive)

Bob keeps doing his stuff, and every time he gets hungry, he checks if Alice left him the
correct message. If yes, he eat, or else he goes back to doing other things.
(Non-blocking receive)

If Alice never calls, Bob will starve to death.
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MPI Communicators, rank and blocking/non-blocking calls

• Cores can be grouped to form communicators (MPI Comm). When program starts, a global
communicator with all cores is created for you (MPI COMM WORLD). You can create
sub-communicators if you want (rarely need to do this).

• The rank of a cores is an integer starting from 0. Each core has a unique rank.

• For many communication methods, there are blocking and non-blocking versions.

• When you use a blocking version of a call, the code waits for the operation to be completed.

• When you use a non-blocking version of a call, the code immediately continues, even if the
operation is not complete.

• Non-blocking calls can be more efficient, as you can overlap communication and computation.
However, it can lead to nasty bugs. In particular, non-blocking receives are very confusing. You
must not use the “received” data before it is actually received.

• MPI provides means of waiting for a send or receive to finish. These must be used to get
synchronization correct.
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To send/receive one needs to use MPI Send and MPI Recv

There are two versions of each call

• Blocking versions MPI Send and MPI Recv. The blocking calls will block till the
send/receive are completed.

• Non-blocking versions MPI Isend and MPI Irecv. The non-blocking calls will
return immediately even if the send/receive are not completed yet.

How to determine if the send/receive are actually completed or not?

Each non-blocking class returns to the caller a MPI Request “token”. This can be used
in the MPI Wait method to wait till the operation with that “token” is completed.

Think of this as a “will call” system. You buy tickets online and print out a receipt at
home. Before the show you go to the “will call” counter with the receipt and pick up
your tickets.
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The anatomy of MPI Send

int MPI Send(const void ∗buf, int count, MPI Datatype datatype, int

dest, int tag, MPI Comm comm)

• buff Is the pointer to the array you want to send

• count Is the size of the array you are sending

• datatype Is the type of data you are sending (doubles, floats, ...)

• dest Is the rank of the destination core you want to send the array to

• tag is a unique tag attached to each message (this distinguishes multiple message
between the same pair of communicating cores)

• comm Is the communicator group you are using

The MPI Recv signature is analogous. Note that a send must be balanced by a receive
or the code will hang!.
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With MPI Irecv call you must wait before you use the data

After calling a MPI Irecv (non-blocking call) you can do other things. However, before
you use the data you are expecting, you must wait by calling the MPI Wait with the
“token” which MPI Irecv gave you.

In addition, you must not send any more data before the receive is completed.
Otherwise terrible things will happen!

In short: when you can, use blocking calls. Reasoning about non-blocking calls is hard
and can lead to very subtle bugs which may only show up when you run on a large
machine. Remember Murphy’s Law: “Anything that can go wrong, will go wrong”
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Summary of distributed programming with MPI

• The standard pattern of distributed programming is: decompose, initialize and then
in a loop, do local updates, and then communicate ghost/skin cell data.

• You only need to know a few methods to write most solvers in parallel.
MPI Comm size, MPI Comm rank, MPI Allreduce, MPI Send and MPI Recv will
cover 90% of your needs.

• You must carefully look at your scheme’s stencil to determine which of your
neighbors you need to send/receive data to/from. Avoid schemes with more that
one or two ghost/skin-cells. I.e. don’t use a scheme which has a wide stencil.
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What we did not cover ...

• OpenMP programming for shared memory parallelism. This is a “directives” based
model, in which you insert “pragma”s into the code, telling the compiler which
parts of the code to parallelize

• Compiler will generate threads to run the loops etc in parallel. Easy to use. Not
much control. Also, launching threads can be expensive.

• Alternate to OpenMP shared memory programming is to use MPI for shared
memory: more complex but full control and no threads are launched.

• When using C++ you can also just use C++ std::thread and concurrency built
into the language. Difficult at first, but very powerful.

• GPU programming: this is a world onto itself. Most codes will need major rewrites
to work on GPUs. PU PICSciE (Research Computing) offers workshops.
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